The history of contraction of the wrist flexors can change cortical excitability.

نویسندگان

  • Meg Stuart
  • Jane E Butler
  • David F Collins
  • Janet L Taylor
  • Simon C Gandevia
چکیده

Voluntary contractions induce thixotropic changes in intrafusal muscle fibres and hence, by induction or removal of "slack", the background discharge and sensitivity of spindle endings to stretch is altered. This study assessed whether such changes also altered the "excitability" of the motor cortex. Eleven subjects performed a series of voluntary conditioning contractions of the wrist flexors designed to remove slack in the intrafusal fibres (contract and test at intermediate length, termed "contract-test") or to introduce slack (contract at long length and test at intermediate length, termed "contract-long"). Surface electromyographic recordings were made from one wrist flexor, flexor carpi radialis. Subjects relaxed after each contraction, and 10 s later a test stimulus was applied to elicit a tendon tap response, H-reflex, or motor-evoked potential (MEP) to transcranial magnetic stimulation in the flexor carpi radialis. Each of the three test stimuli was applied during 15 consecutive pairs of contractions ("contract-long" and "contract-test"). Three subjects repeated the protocol using transmastoid electrical stimulation as the test stimulus to evoke a cervicomedullary motor-evoked potential (CMEP). For the group of subjects, after conditioning contractions designed to induce slack there was a significant reduction in the amplitude of the tendon reflex, no significant change in the H-reflex, and a small but significant reduction in the amplitude of the MEP. In one subject the CMEP was significantly reduced, while it was unchanged in two others. In the absence of corresponding changes in the H-reflex (or CMEP), changes in the size of the response to motor cortical stimulation suggest that the level of motor cortical "excitability" changes according to naturally induced variations in the discharge of muscle spindle afferents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increase in flexor but not extensor corticospinal motor outputs following ischemic nerve

27 The human motor cortex is capable of rapid and long-lasting reorganization. This 28 reorganization is evident globally, in the form of shifts in body part representations, and at 29 the level of individual muscles in the form of changes in corticospinal excitability. 30 Representational shifts provide an overview of how various body parts reorganize relative to 31 each other but do not tell ...

متن کامل

Increase in flexor but not extensor corticospinal motor outputs following ischemic nerve block.

Human motor cortex is capable of rapid and long-lasting reorganization, evident globally, as shifts in body part representations, and at the level of individual muscles as changes in corticospinal excitability. Representational shifts provide an overview of how various body parts reorganize relative to each other but do not tell us whether all muscles in a given body part reorganize in the same...

متن کامل

Real-Time Changes in Corticospinal Excitability during Voluntary Contraction with Concurrent Electrical Stimulation

While previous studies have assessed changes in corticospinal excitability following voluntary contraction coupled with electrical stimulation (ES), we sought to examine, for the first time in the field, real-time changes in corticospinal excitability. We monitored motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and recorded the MEPs using a mechanomyogram, which is...

متن کامل

Anodal transcranial direct current stimulation of the motor cortex induces opposite modulation of reciprocal inhibition in wrist extensor and flexor.

Transcranial direct current stimulation (tDCS) is used as a noninvasive tool to modulate brain excitability in humans. Recently, several studies have demonstrated that tDCS applied over the motor cortex also modulates spinal neural network excitability and therefore can be used to explore the corticospinal control acting on spinal neurons. Previously, we showed that reciprocal inhibition direct...

متن کامل

Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability

Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) followin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 545 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2002